Regional myocardial deformation in children with hypertrophic cardiomyopathy: morphological and clinical correlations.
نویسندگان
چکیده
AIMS Hypertrophic cardiomyopathy (HCM) is a disease with marked regional differences in wall thickness. However, the relation between myocardial function and wall thickness has not been well studied. Ultrasonic strain rate (SR) imaging makes it possible to study the regional myocardial deformation. We investigated whether regional systolic deformation is reduced in paediatric patients with HCM and evaluated its relation with wall thickness, electrocardiographic pattern, and exercise capacity. METHODS AND RESULTS We studied 41 children with asymmetric HCM (mean age 12.3 years) and 29 controls. Electrocardiograms, exercise testing (when feasible), and echocardiograms with tissue Doppler imaging were performed. Peak systolic SR, strain, post-systolic shortening, and time to maximal strain were calculated in the longitudinal direction from the basal septum, mid-septum, and basal lateral myocardial segments and in the radial direction from the basal antero-septal and infero-lateral myocardial segments. Children with HCM had a significant reduction in deformation in all myocardial segments when compared with controls. In the HCM group, peak systolic SR and strain were significantly lower in the basal septum when compared with the mid-septal and basal lateral myocardial segments. In the basal septum, post-systolic shortening was significantly higher and time to maximal strain significantly longer than in mid-septal and lateral myocardial segments. A strong inverse curvilinear relation between peak systolic strain and wall thickness was found (r = -0.86, P < 0.001), with no further decrease in the regional myocardial function demonstrated once maximal wall thickness exceeded a Z-score of 3.5. Peak systolic strain in the basal part of the septum correlated inversely with exercise capacity (r = 0.68, P < 0.01). CONCLUSION Systolic deformation is significantly and inhomogeneously reduced in children with HCM. This reduction in myocardial function is related to maximal wall thickness and decreased exercise capacity.
منابع مشابه
Echocardiographic quantification of myocardial function using tissue deformation imaging, a guide to image acquisition and analysis using tissue Doppler and speckle tracking
Recent developments in the field of echocardiography have allowed the cardiologist to objectively quantify regional and global myocardial function. Regional deformation (strain) and deformation rate (strain-rate) can be calculated non-invasively in both the left and right ventricle, providing information on regional (dys-)function in a variety of clinical settings. Although this promising novel...
متن کاملMyocardial fibrosis delineation in late gadolinium enhancement images of Hypertrophic Cardiomyopathy patients using deep learning methods
Introduction: Accurate delineation of myocardial fibrosis in Late Gadolinium Enhancement on Cardiac Magnetic Resonance (LGE-CMR) has a crucial role in the assessment and risk stratification of HCM patients. As this is time-consuming and requires expertise, automation can be essential in accelerating this process. This study aims to use Unet-based deep learning methods to automate the mentioned ...
متن کاملApical Hypertrophic Cardiomyopathy in a Case with Chest Pain and Family History of Sudden Cardiac Death: A Case Report
Hypertrophic cardiomyopathy (HCM) is the most common genetic cardiovascular disease, which is caused by a multitude of mutations in genes encoding proteins of the cardiac sarcomere (1). Apical hypertrophic cardiomyopathy (AHCM) is an uncommon type of HCM. The sudden cardiac death is less likely to occur in the patients inflicted with AHCM (2). Herein, we presented the case of a 29-year-old man ...
متن کاملSubclinical Left Ventricular Dysfunction in Asymptomatic Type 1 Diabetic Children
J Cardiol Curr Res 2016, 6(6): 00229 measurement of left ventricular ejection fraction (LVEF) using standard two-dimensional (2D) echocardiography [2,3]. However, the LV contractility is a complex mechanism resulting from a three-dimensional structure. Myocardial fibers are orientated in different directions and responsible for three principal types of deformation: longitudinal; radial and circ...
متن کاملA new echocardiographic approach for the detection of non-ischaemic fibrosis in hypertrophic myocardium.
AIMS Regional myocardial fibrosis detected by magnetic resonance imaging (MRI) using late enhancement (LE) indicates an unfavorable prognosis. We investigated in a prospective study whether regional non-ischaemic fibrosis in hypertrophic myocardium can also be detected by ultrasonic strain-rate imaging based on specific visual features of the myocardial deformation traces. METHODS AND RESULTS...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- European heart journal
دوره 28 23 شماره
صفحات -
تاریخ انتشار 2007